Sunday, December 21, 2008
Transistor
In electronics, a transistor is a semiconductor device commonly used to amplify or switch electronic signals. A transistor is made of a solid piece of a semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals. Because the controlled (output) power can be much larger than the controlling (input) power, the transistor provides amplification of a signal. The transistor is the fundamental building block of modern electronic devices, and is used in radio, telephone, computer and other electronic systems. Some transistors are packaged individually but most are found in integrated circuits.
Friday, July 25, 2008
iShoe could protect the elderly from bone fractures
his week, researchers at MIT, Harvard and NASA unveiled the iShoe, a pressure-sensitive insole that detects the unusual weight distribution that heralds balance problems.
The iShoe was originally designed to help astronauts returning from space to reacquaint themselves with Earth's gravity, but the designers quickly identified a larger - and potentially more lucrative - market. The iShoe could detect balance problems in the elderly and identify those most at risk of falls that can easily fracture brittle old bones.
There's a photo of graduate student Erez Lieberman with the iShoe to the right.
A future version of the iShoe could even stimulate the feet, providing feedback and helping patients regain their balance.
As it turns out, we've been here before. Back in 2002, Jim Collins and colleagues at Boston University built a vibrating platform to boost the sense of balance that pressure on the soles of the feet provides.
Yohan Payan at the TIMC lab near Grenoble, France, has tackled the problem from the other end of the body. He designed a device that fits snugly in the mouth and 'tickles' the tongue if the body sways too much in one direction, which also provides feedback to help correct balance problems.
Thursday, April 17, 2008
Mobile
The mobile phone or mobile, also called a wireless, cellular phone, cell phone, cell speaker box, or hand phone (hp),[1] is a short-range, portable electronic device used for mobile communication that uses a network of specialized base stations known as cell sites.
In addition to the standard voice function of a telephone, current mobile phones may support many additional services, and accessories, such as SMS for text messaging, email, packet switching for access to the Internet, and MMS for sending and receiving photos and video. Most current mobile phones connect to a cellular network of base stations (cell sites), which is in turn interconnected to the public switched telephone network (PSTN) (the exception is satellite phones).
U.S. Patent 887,357 for a wireless telephone was issued in 1908 to Nathan B. Stubblefield of Murray, Kentucky. He applied this to "cave radio" telephones and not directly to cellular telephony as the term is currently understood.[2] Cells for mobile phone base stations were invented in 1947 by Bell Labs engineers at AT&T and further developed by Bell Labs during the 1960s. Radiophones have a long and varied history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio telephony, through the Second World War with military use of radio telephony links and civil services in the 1950s, while hand-held cellular radio devices have been available since 1973. Due to their low establishment costs and rapid deployment, mobile phone networks have since spread rapidly throughout the world, outstripping the growth of fixed telephony.[citation needed]
In 1945, the zero generation (0G) of mobile telephones was introduced. 0G mobile phones, such as Mobile Telephone Service, were not cellular, and so did not feature "handover" from one base station to the next and reuse of radio frequency channels.[citation needed] Like other technologies of the time, it involved a single, powerful base station covering a wide area, and each telephone would effectively monopolize a channel over that whole area while in use. The concepts of frequency reuse and handoff as well as a number of other concepts that formed the basis of modern cell phone technology are first described in Patent Number 4152647, issued May 1, 1979 to Charles A. Gladden and Martin H. Parelman, both of Las Vegas, Nevada and assigned by them to the United States Government. A careful reading of their patent makes it clear that this is the first embodiment of all the concepts that formed the basis of the next major step in mobile telephony, the Analog cellular telephone. Concepts covered in this patent (cited in at least 34 other patents) also were later extended to several satellite communication systems. Later updating of the cellular system to a digital system credits this patent.
Martin Cooper, a Motorola researcher and executive is widely considered to be the inventor of the first practical mobile phone for handheld use in a non-vehicle setting. Using a modern, if somewhat heavy portable handset, Cooper made the first call on a handheld mobile phone on April 3, 1973.[3]
The first commercial citywide cellular network was launched in Japan by NTT in 1979. Fully automatic cellular networks were first introduced in the early to mid 1980s (the 1G generation). The Nordic Mobile Telephone (NMT) system went online in 1981[citation needed]. This was followed by a boom in mobile phone usage, particularly in Northern Europe.[citation needed]
In 1983, Motorola DynaTAC was the first approved mobile phone by FCC in the United States. In 1984, Bell Labs developed modern commercial cellular technology (based, to a large extent, on the Gladden, Parelman Patent), which employed multiple, centrally-controlled base stations (cell sites), each providing service to a small area (a cell). The cell sites would be set up such that cells partially overlapped. In a cellular system, a signal between a base station (cell site) and a terminal (phone) only need be strong enough to reach between the two, so the same channel can be used simultaneously for separate conversations in different cells. Cellular systems required several leaps of technology, including handover, which allowed a conversation to continue as a mobile phone traveled from cell to cell. This system included variable transmission power in both the base stations and the telephones (controlled by the base stations), which allowed range and cell size to vary. As the system expanded and neared capacity, the ability to reduce transmission power allowed new cells to be added, resulting in more, smaller cells and thus more capacity. The evidence of this growth can still be seen in the many older, tall cell site towers with no antennae on the upper parts of their towers. These sites originally created large cells, and so had their antennae mounted atop high towers; the towers were designed so that as the system expanded—and cell sizes shrank—the antennae could be lowered on their original masts to reduce range.
In addition to the standard voice function of a telephone, current mobile phones may support many additional services, and accessories, such as SMS for text messaging, email, packet switching for access to the Internet, and MMS for sending and receiving photos and video. Most current mobile phones connect to a cellular network of base stations (cell sites), which is in turn interconnected to the public switched telephone network (PSTN) (the exception is satellite phones).
U.S. Patent 887,357 for a wireless telephone was issued in 1908 to Nathan B. Stubblefield of Murray, Kentucky. He applied this to "cave radio" telephones and not directly to cellular telephony as the term is currently understood.[2] Cells for mobile phone base stations were invented in 1947 by Bell Labs engineers at AT&T and further developed by Bell Labs during the 1960s. Radiophones have a long and varied history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio telephony, through the Second World War with military use of radio telephony links and civil services in the 1950s, while hand-held cellular radio devices have been available since 1973. Due to their low establishment costs and rapid deployment, mobile phone networks have since spread rapidly throughout the world, outstripping the growth of fixed telephony.[citation needed]
In 1945, the zero generation (0G) of mobile telephones was introduced. 0G mobile phones, such as Mobile Telephone Service, were not cellular, and so did not feature "handover" from one base station to the next and reuse of radio frequency channels.[citation needed] Like other technologies of the time, it involved a single, powerful base station covering a wide area, and each telephone would effectively monopolize a channel over that whole area while in use. The concepts of frequency reuse and handoff as well as a number of other concepts that formed the basis of modern cell phone technology are first described in Patent Number 4152647, issued May 1, 1979 to Charles A. Gladden and Martin H. Parelman, both of Las Vegas, Nevada and assigned by them to the United States Government. A careful reading of their patent makes it clear that this is the first embodiment of all the concepts that formed the basis of the next major step in mobile telephony, the Analog cellular telephone. Concepts covered in this patent (cited in at least 34 other patents) also were later extended to several satellite communication systems. Later updating of the cellular system to a digital system credits this patent.
Martin Cooper, a Motorola researcher and executive is widely considered to be the inventor of the first practical mobile phone for handheld use in a non-vehicle setting. Using a modern, if somewhat heavy portable handset, Cooper made the first call on a handheld mobile phone on April 3, 1973.[3]
The first commercial citywide cellular network was launched in Japan by NTT in 1979. Fully automatic cellular networks were first introduced in the early to mid 1980s (the 1G generation). The Nordic Mobile Telephone (NMT) system went online in 1981[citation needed]. This was followed by a boom in mobile phone usage, particularly in Northern Europe.[citation needed]
In 1983, Motorola DynaTAC was the first approved mobile phone by FCC in the United States. In 1984, Bell Labs developed modern commercial cellular technology (based, to a large extent, on the Gladden, Parelman Patent), which employed multiple, centrally-controlled base stations (cell sites), each providing service to a small area (a cell). The cell sites would be set up such that cells partially overlapped. In a cellular system, a signal between a base station (cell site) and a terminal (phone) only need be strong enough to reach between the two, so the same channel can be used simultaneously for separate conversations in different cells. Cellular systems required several leaps of technology, including handover, which allowed a conversation to continue as a mobile phone traveled from cell to cell. This system included variable transmission power in both the base stations and the telephones (controlled by the base stations), which allowed range and cell size to vary. As the system expanded and neared capacity, the ability to reduce transmission power allowed new cells to be added, resulting in more, smaller cells and thus more capacity. The evidence of this growth can still be seen in the many older, tall cell site towers with no antennae on the upper parts of their towers. These sites originally created large cells, and so had their antennae mounted atop high towers; the towers were designed so that as the system expanded—and cell sizes shrank—the antennae could be lowered on their original masts to reduce range.
Sunday, April 13, 2008
History of Apple computer
History
Main article: History of Apple Inc.
The company introduced the Apple II microcomputer in March 1977. A few years later, in 1983, it introduced the Lisa, the first commercial personal computer to employ a graphical user interface (GUI), which was influenced in part by the Xerox Alto. Lisa was also the first personal computer to have the mouse. In 1984, the Macintosh was introduced, which arguably advanced the concept of a new user-friendly graphical user interface. Apple's success with the Macintosh became a major influence in the development of graphical interfaces elsewhere, with major computer operating systems, such as the Commodore Amiga, and Atari ST, appearing on the market within two years of the introduction of the Macintosh.
In 1991, Apple introduced the PowerBook line of portable computers. The 1990s also saw Apple's market share fall as competition from Microsoft Windows and the comparatively inexpensive IBM PC compatible computers that would eventually dominate the market. In the 2000s, Apple expanded its focus on software to include professional and prosumer video, music, and photo production solutions, with a view to promoting their products as a "digital hub". It also introduced the iPod, the most popular digital music player in the world.[8]
Friday, April 11, 2008
Computer
A computer is a machine that manipulates data according to a list of instructions.
The first devices that resemble modern computers date to the mid-20th century (around 1940 - 1945), although the computer concept and various machines similar to computers existed earlier. Early electronic computers were the size of a large room, consuming as much power as several hundred modern personal computers.[1] Modern computers are based on tiny integrated circuits and are millions to billions of times more capable while occupying a fraction of the space.[2] Today, simple computers may be made small enough to fit into a wristwatch and be powered from a watch battery. Personal computers in various forms are icons of the Information Age and are what most people think of as "a computer"; however, the most common form of computer in use today is the embedded computer. Embedded computers are small, simple devices that are used to control other devices — for example, they may be found in machines ranging from fighter aircraft to industrial robots, digital cameras, and children's toys.
The ability to store and execute lists of instructions called programs makes computers extremely versatile and distinguishes them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a certain minimum capability is, in principle, capable of performing the same tasks that any other computer can perform. Therefore, computers with capability and complexity ranging from that of a personal digital assistant to a supercomputer are all able to perform the same computational tasks given enough time and storage capacity.
For more details click here http://en.wikipedia.org/wiki/Computer
The first devices that resemble modern computers date to the mid-20th century (around 1940 - 1945), although the computer concept and various machines similar to computers existed earlier. Early electronic computers were the size of a large room, consuming as much power as several hundred modern personal computers.[1] Modern computers are based on tiny integrated circuits and are millions to billions of times more capable while occupying a fraction of the space.[2] Today, simple computers may be made small enough to fit into a wristwatch and be powered from a watch battery. Personal computers in various forms are icons of the Information Age and are what most people think of as "a computer"; however, the most common form of computer in use today is the embedded computer. Embedded computers are small, simple devices that are used to control other devices — for example, they may be found in machines ranging from fighter aircraft to industrial robots, digital cameras, and children's toys.
The ability to store and execute lists of instructions called programs makes computers extremely versatile and distinguishes them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a certain minimum capability is, in principle, capable of performing the same tasks that any other computer can perform. Therefore, computers with capability and complexity ranging from that of a personal digital assistant to a supercomputer are all able to perform the same computational tasks given enough time and storage capacity.
For more details click here http://en.wikipedia.org/wiki/Computer
Wednesday, April 9, 2008
Intel Details Upcoming New Processor Generations
Marking the next step in Intel's "tick-tock" product strategy and cadence to deliver a new process technology with an enhanced microarchitecture or entirely new microarchitecture every year, Intel Corporation will begin producing its next-generation Penryn family of processors in the second half of this year. These new processors benefit from enhancements to the Intel® Core™ microarchitecture and also Intel's industry-leading 45nm Hi-k process technology with its hafnium-based high-K + metal gate transistor design, which results in higher performance and more energy-efficient processors.
Intel has more than 15 45nm Hi-k product designs in various stages of development, and will have two 45nm manufacturing fabs in production by the end of the year, with a total of four in production by the second half of 2008 that will deliver tens of millions of these processors. Below are many of the details of the Penryn processor family and a glimpse into some of the key features of Intel's future generation of processors, codenamed Nehalem.
PENRYN FAMILY MICROARCHITECTURE INNOVATIONS
A Range of Products -- Six Penryn family processors, including dual- and quad-core desktop processors and a dual-core mobile processor are all under the Intel Core processor brand name as well as new dual- and quad-core server processors under the Intel® Xeon® processor brand name. A processor for higher-end server multiprocessing systems is also under development. As previously noted, Intel already has a total of 15 45nm products scheduled.
Technical Marvel -- 45nm next-generation Intel® Core™2 quad-core processors will have 820 million transistors. Thanks to our high-k metal transistor invention, think of 820 million more power efficient light bulbs going on and off at light-speeds. The dual-core version has a die size of 107mm2, which is 25 percent smaller than Intel's current 65nm products - and quarter of the size of the average U.S. postage stamp - and operate at the same or lower power than Intel's current dual-core processors.
Deep Power Down for Energy Savings, Improved Battery Life -- The mobile Penryn processor has a new advanced power management state called Deep Power Down Technology that significantly reduces the power of the processor during idle periods such that internal transistor power leakage is no longer a factor. This helps extend battery life in laptops. This is a major advancement over previous generation industry-leading Intel mobile processors.
Intel Dynamic Acceleration Technology Enhanced Performance for Single Threaded Apps -- For the mobile Penryn processor, Intel has enhanced the Intel® Dynamic Acceleration Technology available in current Intel Core 2 processors. This feature uses the power headroom freed up when a core is made inactive to boost the performance of another still active core. Imagine a shower with two powerful water shower heads, when one shower head is turned off, the other has increased water pressure (performance).
Speeding Up Video, Photo Imaging, and High Performance Software -- Penryn includes Intel® Streaming SIMD Extensions 4 (SSE4) instructions, the largest unique instruction set addition since the original SSE Instruction Set Architecture (ISA). This extends the Intel® 64 instruction set architecture to expand the performance and capabilities of the Intel® architecture.
Other Technical Features to Improve Performance
Microarchitecture Optimizations -- Increases the overall performance and energy efficiency of the already leading Intel Core microarchitecture to deliver more instruction executions per clock cycle, which results in more performance and quicker PC responsiveness.
Enhanced Intel® Virtualization Technology -- Penryn speeds up virtual machine transition (entry/exit) times by an average of 25 to 75 percent. This is all done through microarchitecture improvements and requires no virtual machine software changes. Virtualization partitions or compartmentalizes a single computer so that it can run separate operating systems and software, which can better leverage multicore processing power, increase efficiency and cut costs by letting a single machine act as many virtual "mini" computers.
Higher Frequencies -- Penryn family of products will deliver higher overall clock frequencies within existing power and thermal envelopes to further increase performance. Desktop and server products will introduce speeds at greater than 3GHz.
Fast Division of Numbers – Penryn-based processors provide fast divider performance, roughly doubling the divider speed over previous generations for computations used in nearly all applications through the inclusion of a new, faster divide technique called Radix 16. The ability to divide instructions and commands faster increases a computer's performance.
Larger Caches -- Penryn processors include up to a 50 percent larger L2 cache with a higher degree of associativity to further improve the hit rate and maximize its utilization. Dual-core Penryn processors will feature up to a 6MB L2 cache and quad-core processors up to a 12MB L2 cache. Cache is a memory reservoir where frequently accessed data can be stored for more rapid access. Larger and faster cache sizes speed a computer's performance and response time.
Unique Super Shuffle Engine -- By implementing a full-width, single-pass shuffle unit that is 128-bits wide, Penryn processors can perform full-width shuffles in a single cycle. This significantly improves performance for SSE2, SSE3 and SSE4 instructions that have shuffle-like operations such as pack, unpack and wider packed shifts. This feature will increase performance for content creation, imaging, video and high-performance computing.
NEHALEM MICROARCHITECTURE
After Penryn and the 45nm Hi-k silicon technology introduction comes Intel's next-generation microarchitecture (Nehalem) slated for initial production in 2008. By continuing to innovate at this rapid cadence, Intel will deliver enormous performance and energy efficiency gains in years to come, adding more performance features and capabilities for new and improved applications. Here are some new initial disclosures around our Nehalem microarchitecture:
Dynamically scalable for leadership performance on demand with energy efficiency
> Dynamically managed cores, threads, cache, interfaces and power
> Leverages leading 4 instruction issue Intel® Core microarchitecture technology
> Simultaneous multi-threading (similar to Intel Hyper-Threading Technology) returns to enhance performance and energy efficiency
> Innovative new Intel® SSE4 and ATA instruction set architecture additions
> Superior multi-level shared cache leverages Intel® Smart Cache technology
> Leadership system and memory bandwidth
> Performance enhanced dynamic power management
> Design scalable for optimal price/performance/energy efficiency in each market segment
New system architecture for next-generation Intel processors and platforms
Scalable performance: 1 to 16+ threads, 1 to 8+ cores, scalable cache sizes
Scalable and configurable system interconnects and integrated memory controllers
High performance integrated graphics engine for client
Monday, July 16, 2007
Hardware
Main article: Computer hardware
The term hardware covers all of those parts of a computer that are tangible objects. Circuits, displays, power supplies, cables, keyboards, printers and mice are all hardware.
History of computing hardware First Generation (Mechanical/Electromechanical) Calculators Antikythera mechanism, Difference Engine, Norden bombsight
Programmable Devices Jacquard loom, Analytical Engine, Harvard Mark I, Z3
Second Generation (Vacuum Tubes) Calculators Atanasoff-Berry Computer
Programmable Devices ENIAC, EDSAC, EDVAC, UNIVAC I
Third Generation (Discrete transistors and SSI, MSI, LSI Integrated circuits) Mainframes System/360, BUNCH
Minicomputer PDP-8, PDP-11, System/32, System/36
Fourth Generation (VLSI integrated circuits) Minicomputer VAX, AS/400
4-bit microcomputer Intel 4004, Intel 4040
8-bit microcomputer Intel 8008, Intel 8080, Motorola 6800, Motorola 6809, MOS Technology 6502, Zilog Z80
16-bit microcomputer 8088, Zilog Z8000, WDC 65816/65802
32-bit microcomputer 80386, Pentium, 68000, ARM architecture
64-bit microcomputer [14] x86-64, PowerPC, MIPS, SPARC
Embedded computer 8048, 8051
Personal computer Desktop computer, Home computer, Laptop computer, Personal digital assistant (PDA), Portable computer, Tablet computer, Wearable computer
Server class computer
Theoretical/experimental Quantum computer
Chemical computer
DNA computing
Optical computer
Other Hardware Topics Peripheral device (Input/output) Input Mouse, Keyboard, Joystick, Image scanner
Output Monitor, Printer
Both Floppy disk drive, Hard disk, Optical disc drive, Teleprinter
Computer busses Short range RS-232, SCSI, PCI, USB
Long range (Computer networking) Ethernet, ATM, FDDI
The term hardware covers all of those parts of a computer that are tangible objects. Circuits, displays, power supplies, cables, keyboards, printers and mice are all hardware.
History of computing hardware First Generation (Mechanical/Electromechanical) Calculators Antikythera mechanism, Difference Engine, Norden bombsight
Programmable Devices Jacquard loom, Analytical Engine, Harvard Mark I, Z3
Second Generation (Vacuum Tubes) Calculators Atanasoff-Berry Computer
Programmable Devices ENIAC, EDSAC, EDVAC, UNIVAC I
Third Generation (Discrete transistors and SSI, MSI, LSI Integrated circuits) Mainframes System/360, BUNCH
Minicomputer PDP-8, PDP-11, System/32, System/36
Fourth Generation (VLSI integrated circuits) Minicomputer VAX, AS/400
4-bit microcomputer Intel 4004, Intel 4040
8-bit microcomputer Intel 8008, Intel 8080, Motorola 6800, Motorola 6809, MOS Technology 6502, Zilog Z80
16-bit microcomputer 8088, Zilog Z8000, WDC 65816/65802
32-bit microcomputer 80386, Pentium, 68000, ARM architecture
64-bit microcomputer [14] x86-64, PowerPC, MIPS, SPARC
Embedded computer 8048, 8051
Personal computer Desktop computer, Home computer, Laptop computer, Personal digital assistant (PDA), Portable computer, Tablet computer, Wearable computer
Server class computer
Theoretical/experimental Quantum computer
Chemical computer
DNA computing
Optical computer
Other Hardware Topics Peripheral device (Input/output) Input Mouse, Keyboard, Joystick, Image scanner
Output Monitor, Printer
Both Floppy disk drive, Hard disk, Optical disc drive, Teleprinter
Computer busses Short range RS-232, SCSI, PCI, USB
Long range (Computer networking) Ethernet, ATM, FDDI
Subscribe to:
Posts (Atom)
your Information
Sign by Danasoft - Myspace Layouts and Signs
Sign by Danasoft - Myspace Layouts and Signs